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Abstract 

  Einstein’s equations are derived by following Jacobson’s thermodynamic method.  

It is seen that a family of possible field equations exist which satisfy the thermodynamic 

argument.  Modified theories of gravity are addressed as possible candidates for replacing 

dark matter as an explanation for anomalous cosmological phenomena.  Many of the 

proposed modified theories are not powerful enough to explain the currently observed 

phenomena and are rejected as viable theories of gravity.  A surviving candidate, TeVeS, 

is further analyzed under the aforementioned thermodynamic argument to check for its 

consistency with thermodynamics. 
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1. Introduction 

 

 It is now believed by many contemporary physicists that there is a fundamental 

connection between general relativity and thermodynamics, but this has not always been 

the case.  Research in classical relativity theory prior to the 1970’s had revealed a series 

of laws which seemed to govern the mechanics of black holes [1, pg-92], which are as 

follows: 

 

Zeroth Law -The event horizon of a stationary black hole (at equilibrium) has constant    

surface gravity.  

 

First Law  

8
kdM dA dJ dQ


   , 

where M is the mass, A  is the horizon surface area,   is the angular velocity, J is the 

angular momentum,  is the electrostatic potential, Q  is the electric charge, and k is the 

surface gravity of the horizon. 

 

Second Law - The horizon area never decreases. 

 

Third Law - A black hole cannot have vanishing surface gravity. 
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These four laws have a peculiar similarity to the four laws of thermodynamics.  The 

zeroth law parallels its thermodynamic counterpart in that, temperature is constant in a 

body at thermal equilibrium.  Like wise, the first law in both the black hole and 

thermodynamic paradigms is simply an expression of conservation of energy, where mass 

is linked to energy via                                                    

                                                                    2E Mc .                                                    (1.1) 

The second law of black hole mechanics is analogous to that of thermodynamics, with 

horizon surface area replacing entropy.  Finally, the third law stipulates that absolute zero 

of surface gravity cannot be reached.   At this point the laws of black hole mechanics are 

derived from strictly general relativistic considerations and happen to oddly parallel those 

of thermodynamics.   

 In 1972, Jacob Bekenstein [2] became very concerned with a certain 

inconsistency in the thermodynamics around black holes.  Consider an observer outside 

the event horizon of a black hole.  The observer throws a container of hot gas past the 

event horizon.  For all intensive purposes the entropy of the container and its contents has 

vanished from all possible observation.  Since entropy effectively decreases, it is a direct 

violation of the second law of thermodynamics.  Bekenstein concluded that 

thermodynamics must be preserved and black holes themselves must have entropy.  He 

went as far as determining that a black hole’s entropy must be proportional to its horizon 

area, however, he wasn’t able to determine the exact relationship.  Shortly after, Stephen 

Hawking was not only able to determine the exact relationship between the entropy and 

the horizon area, but he also concluded that black holes have an associated temperature 

[3].  This was enough to conclude that black holes are indeed thermodynamic bodies and 
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are subject to the laws of thermodynamics.  However, black holes are only one facet of 

general relativity.  There was not yet a complete connection between general relativity 

and thermodynamics.   

 Following this, it was realized that any accelerated observer experiences an 

effective event horizon which is subject to the same entropy argument made for black 

holes.  Furthermore, any such accelerated observer also experiences a temperature 

associated with that acceleration.  Finally, in 1995 Ted Jacobson [4] was able to derive 

the Einstein field equations from the thermodynamic relationship 

 

dQ TdS . 

 

At that point the connection between thermodynamics and general relativity had been 

solidified.  This connection can be pushed farther by imposing the condition that any 

metric theory of gravity must be consistent with thermodynamics.  This results in not just 

the Einstein equations, but a family of possible field equations.  From this set, we can 

probe for solutions that account for phenomena which Einstein’s equations handle 

awkwardly or not at all.  For instance, a new field equation may be able to account for the 

peculiar stellar velocity distribution of spiral galaxies without having to appeal to dark 

matter.   
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2. Quantum Field Theory 

 The goal of quantum field theory is to create a quantum mechanical interpretation 

of the fields of classical physics.  This is a daunting task which is often simplified by 

considering a classical model.  Consider a rod of masses each connected by a series of 

springs which are only displaced in the horizontal direction [5, pg-558]. 

 Let the equilibrium position of each mass be 0iq .  If the masses are shifted from 

the equilibrium position by i  then the position iq of each mass is 

 

0 .i i iq q    

 

If the mass of each particle is the same, the kinetic energy of the system is then 

 

2 21 1 .
2 2i i

i i
T m q m 

        
   

   

 

The potential energy is given by the sum of the potential energies stored in each spring.  

The potential energy of each spring is determined by its extension from its equilibrium 

position, which is dependent only on the position of neighboring masses.  If i represents 

a particular mass’s deviation from equilibrium and 1i  represents the deviation of its 
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nearest neighbor from its respective equilibrium position, then the potential energy stored 

in the rod is given by: 

 

 2
1

1 .
2 i i

i
V k     

 

Combining our expressions for the kinetic and potential energy we see that the lagrangian 

for this system is  

 

   
2 2

2
1

1 1 .
2 2i ii i i

i i

L m V m k    
 



                
      

   

 

This can be written as 

 

                                        
22

11
2

i i
i

i

mL l kl
l l

 




             

 ,                                    (2.1) 

 

where l is the lattice spacing between the masses.  The idea is to construct a one 

dimensional scalar field out of the rod model by taking the continuum limit.  That is, if 

the lattice spacing of the rod is initially l  , then we are concerned with what happens 

when 0l  .  In this limit, the i ’s can be replaced by a new variable  ,x t  which may 

vary with respect to both position and time.  For the sake of convention,  ,x t is written 

as  ,x t , this is called a scalar field [6, pg-17].  This subtle shift from mass positions in 
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a lattice to a field is usually taken for granted as a simple observation, but a quick glance 

reveals an oddity in the transformation.  Namely that, the ’s are supposed to indicate the 

positions of the particles, however, they transform to   which is dependent on position.  

The point to be made is that the ’s indicate how stretched each spring is.  In the 

continuum limit of this particular rod example (when the rod essentially becomes a string 

of rubber)  tells us how stretched the rubber string is at any given point on the string.  

Returning to equation (2.1), we want to see what the Lagrangian becomes in the 

continuum limit, starting with the kinetic energy term 

 

21 .
2 i

i
K m 

   
 

  

 

In the continuum limit there is a uniform mass density.  Thus, the kinetic energy of a bit 

of mass contained by a differential line segment is 

 

2
21 1 .

2 2
dK v dm dx

t



     

 

 

The total kinetic energy is then found by integrating over all space (in our case the one 

dimensional real line). 

 

                                                         
21 .

2
K dx

t



                                                   (2.2) 
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In the case of the potential energy, we notice that 

 

   1 .i i x l x
l l

    
  

 

Taking the continuum limit of the above expression we have 

 

   1

0
lim .i i

l

x l x
l l

  



  
  

 
 

 

We recognize this as the definition of a partial derivative, thus 

 

1 .i i

l x
    




 

 

The potential energy in the continuum limit is then     

 

21 ,
2

V Y dx
x
      

 

where Y is Young’s Modulus.  Remembering the aforementioned convention (  ) 

for a scalar field the potential energy becomes 

 

                                                         
21 ,

2
V Y dx

x
                                                    (2.3) 
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where Y is kl in the continuum limit (see appendix 1).  Combining equations (2.2) and 

(2.3) we arrive at the lagrangian of the continuous system 

 

2 21 .
2

L Y dx
t x
 


                

  

 

Let 2Y c and scale the field such that 


 , then the lagrangian becomes  

 

                                  

2 2

21 1 1
2

L c dx
t x
 

 
 

                   
  

                                  
2 2

21 .
2

c dx
t x
                 

                                                    (2.4) 

 

The action of the system is found by integrating (2.4) over time,    

 

                                         
2 2

2

0

1 .
2

T

S c dxdt
t x
 


                

                                    (2.5) 

 

Starting with a simple classical example we have managed to create a Lorentz invariant 

action (see appendix 2).  It is not the contemporary view that the scalar fields of physics 

are composed of infinitesimally small oscillators.  This is a simple physical example that 
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shows us the form in which the action should take based on classical principles.  It will 

also give us insight later as to how to quantize the field.  The modern view [6, pg-17] is 

to first construct an action which obeys a specific symmetry rule, in this case Lorentz 

invariance.  So more generally, we can start with the Lorentz invariant action of the form 

 

        

22 2 2
2 2 3

2 2 2 3

1 1 1 .....
2 2 2 3!

1 1 .....
2 2 3!

d

d

gS d x m
t x y z

gd x m

   
 

  

                                      
       



      

                                                , , ,dd xL
t x

 


  
    
                                                 (2.6) 

 

where we have taken c=1,  
22 2 2

2

t x y z
   

                                
, and d  is the 

dimension of the spacetime that we are concerned with, for our purposes four-

dimensional Minkowski space.  As with all action principles, we want to find the 

equations which result from extremizing the action.  These are the Euler-Lagrange 

equations [6, pg-19] which have the general form,  

 

 
0,L L


 

     
    
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where Einstein summation convention is being used.  For our specific lagrangian density, 

this becomes 

 

         0 1 2 3
0 1 2 3

2 2 2 2
2 2 3

2 2 2 2
0 1 2 3

0

..... 0
2 6

L L L L L L L

gm
x x x x


      

      

               
                                               

    
             

            

                                            2 2 2 3 ..... 0.
2 6
gm                                           (2.7) 

                                                                                                                                     

This is the general field equation for our system.  Now that we have arrived at the field 

equation, it is important to reflect on why we chose a Lorentz invariant action.  We notice 

that since we chose a Lorentz invariant action we were able to generate a field equation 

which takes the same form for every inertial observer.  We want the laws of physics to be 

the same for every inertial reference frame so that there is no preferred reference frame.  

Otherwise, the laws of physics could change between inertial reference frames.  In the 

classical sense this would be analogous to Newton’s second law taking different forms 

depending on which reference frame you are in,   

 

' 2 '.
net

net

F ma

F ma





 

   

 

In order to do physics, we would have to know which inertial frame we were in (as if 

there was a hierarchy of frames) and which law of physics corresponds to that particular 
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reference frame.  In many ways it is empirically and conceptually treacherous (if not 

impossible) to distinguish between inertial reference frames and the laws of physics in 

this fashion.  So in order to do physics, we choose the laws of physics to take the same 

form in each inertial reference frame.  Working backwards, we can achieve this by 

creating a Lorentz invariant action. 

 Now that we have constructed the classical field theory, we need to quantize the 

field.  The first attempt at creating a relativistic equation involving a wave function [7, -

pg-29] for a spinless free particle used the relativistic energy relationship: 

                                           

                                                          2 2 2 2 4E c P m c  .                                                 (2.8) 

 

Substituting in operators from standard quantum theory, 

 

ˆ ˆ, ,E i P i
t


   


   

 

and acting them on a wave function   , equation (2.8) becomes 

 

2 2 2
2

2 2 2

1 0.m c
c t

 
 

     
 

 

Choosing 1c   , the wave equation takes the form 

 

                                                             2 2 0.m                                                      (2.9)    
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This is the Klein-Gordon equation and it was initially met with great skepticism.  The 

first of its two main defects is that the probability density is not positive definite [7, pg-

30].  In standard quantum theory, a positive definite probability density is necessary in 

order to make sensible physical predictions.  The other problem was discovered after 

solving (2.9) for .  For a real scalar field, equation (2.9) has the plane wave solution 

 

                                                *, k ki t k x i t k xx t Ae A e      
 

   ,                                    (2.10) 

 

where 2 2
k k m  


so that equation (2.8) is satisfied (with 1c   , so ,E k P 

 
).   

Since the field is free, there are no restraints on k  and the general solution for the field 

becomes a continuous linear combination of solutions 

 

                                       *, k ki t k x i t k x Dx t A k e A k e d k      
 

    .                        (2.11) 

 

If the two terms in equation (2.10) are considered as wave functions [13, pg-170], then 

the first would correspond to a particle of momentum k


 and positive energy kE .  The 

second term would represent the wave function of a particle with momentum - k


 and 

negative energy   - kE .   The Klein-Gordon equation then allows for the existence of 

negative as well as positive energy states.  This means that there is no non-arbitrary 

ground state and a particle could continuously drop energy states forever emitting 
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photons.  Such instability is not observed in the quantum world, so the original Klein-

Gordon approach was seen as untenable.  

 The problem with the initial Klein-Gordon equation lay completely in its 

interpretation, namely that it was an equation for a single particle with   serving as a 

wave function.  In order to remedy this, we consider a multi- particle interpretation where 

  is a field operator rather than a wave function.   Taking the canonical approach we 

recall for classical systems 

 

   
21

2
L m q V q



  . 

 

The generalized momentum and classical Hamilton-Jacobi integral are given by, 

 

,

.i
i

i

Lp
q

Lh q L
q












 




 

 

Substituting the generalized momentum for the q


’s in the Hamilton-Jacobi integral yields 

the Hamiltonian.  Following Heisenberg, we consider ,p q to be operators and impose the 

commutator conditions, 
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 

   

 

,

,

, .

p q i
dp i H p V q
dt
dq i H q p
dt

 

  

 

                                            (2.12) 

 

We can extend these concepts to field theory.  Starting with the classical lagrangian 

embedded in equation (2.6) and dropping the higher-order terms, we have  

 

 
2

2 2 21
2

DL d x m
t
  

              
 , 

 

where D  is the spatial dimension of our spacetime.  Then the conjugate momentum 

density to the field is  

 

   ,
,

x tLx t
t

t







 
     


 . 

 

Analogous to the canonical commutation relationship between momentum and position, 

we have 

 

                               
           

       

,
, , ', , ', ' ,

, , ', , , ', 0.

Dx t
x t x t x t i x x

t

x t x t x t x t


   

   

 
         
       


     

    
          (2.13) 
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Following the classical construction of the Hamiltonian from the Hamilton-Jacobi 

integral we can determine the quantum field Hamiltonian [7, pg-130], 

                     

                                      

 
2 2 21

2

D

D

LH d x L

d x m


 



 


   

 
   

   
        



          

                                          2 2 2
0

1
2

Dd x m             .                           (2.14) 

 

The Hamiltonian here is positive definite [7, pg-130], thus the scalar field is not ruined by 

a negative energy problem.  Now we must further investigate the field operator .  In 

standard quantum mechanical fashion we expect the field operator to be Hermitian, 

whose Fourier expansion can be written as: 

   

                     
 

        †1,
2 2

k ki t k x i t k x D

D
k

x t a k e a k e d k 
 

     
    ,             (2.15) 

 

where again 2 2
k k m  


 and  a k


,  †a k


 are operators.  Without loss of generality 

we consider the one dimensional case and the operators  a k ,  †a k .  The commutators 

of these new operators are [7, pg 132]: 
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       
     

† †

†

, ' , ' 0

, ' ' .

a k a k a k a k

a k a k k k

      
    

                               (2.16) 

 

To determine the nature of these operators we define a new operator, 

 

                                                            † .N k a k a k                                               (2.17) 

 

Let the eigenvalue of this operator be  n k such that 

                                                  

                                                        N k n k n k n k .                                         (2.18) 

 

Now we determine the commutation relations, 

 

                              

           
           
     
 

† † †

† † † †

† †

†

,

,

.

N k a k N k a k a k N k

a k a k a k a k a k a k

a k a k a k

a k

    
 

   


               (2.19) 

 

Similarly, 

 

                                             ,N k a k N k a k a k N k a k       .                    (2.20) 

 

From equation (2.19) we see that 
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               
         
      

† † †

† †

†1 .

N k a k n k a k N k n k a k n k

a k n k n k a k n k

n k a k n k

 

 

 

                   (2.21) 

 

Similarly from equation (2.20) we get: 

 

                                                     1N k a k n k n k a k n k  .                        (2.22) 

 

Comparing (2.21), (2.22) to (2.18) we see that the operators  a k ,  †a k must behave 

according to the following rules, 

 

                                                 
     
     

† 1

1 .

a k n k n k

a k n k n k

 

 
                                           (2.23) 

 

This suggests that the operator  N k is the operator for the number of particles with 

momentum k  and  n k  is then the number of particles with momentum k , also known 

as the occupation number.   †a k  and  a k are thus called creation and annihilation 

operators because they literally create and remove particles.  This is completely 

analogous to the raising and lowering operators of the quantum mechanical oscillator.  

We should also remember from the quantum oscillator that in order to assure 

normalization our new operators should take the form: 
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       
       

† 1 1

1 .

a k n k n k n k

a k n k n k n k

  

 
                               (2.24) 

 

For a system where possible momentum values are finite, the momentum state takes the 

form, 

 

       1 2 3 .....in k n k n k n k . 

 

We define the ground state to be 

 

                                                        
 

0 0,0,0,.....,0

0 0a k




                                                (2.25) 

 

We notice that two creation operators acting on a state can create two particles with the 

same momentum.  This indicates that the Klein-Gordon field is a bosonic field.  To deal 

with fermions the raising and lowering operators must be altered such that no particles 

are produced in the same state.  This also amounts to changing the field equation, but for 

our purposes the bosonic Klein-Gordon field is sufficient. 

 The Klein-Gordon field is a great example of a quantized field.  We can extend 

quantum field theory to the curved spacetime of general relativity by utilizing the action 

principle developed in the beginning of this section.  It is important to note that the Klein-

Gordon equation (2.9) can be derived from the Euler-Lagrange equations associated with 
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an action principle.  This can be seen in equation (2.7), which reduces to (2.9) under the 

free field assumption ( second order and higher terms in the field are neglected).  The 

motivation for creating an action of the form (2.6) was to ensure that the action takes the 

same form under Lorentz coordinate transformations.  In general relativity each observer 

has an associated coordinate frame which may or may not be linked to other observers 

via Lorentz transformations.  Considering the broad and varying use of coordinate 

systems in general relativity we want to create an action principle that is invariant under 

coordinate transformations.  Since the spacetime structure is defined by the metric tensor 

we expect the action to dependent on both metric components as well as field 

components.  Following the form of (2.6) we choose  

 

                                          4 2 21
2

S dx g g m
        ,                                (2.26) 

 

where g is the determinant of the metric.  This is a coordinate-invariant action (see 

appendix 3) for a free field in curved spacetime.  It is observed that the free field form of 

equation (2.6) is retrieved when the arbitrary metric g becomes the Minkowski metric .  

If we consider a massless scalar field in a 1+1 dimensional spacetime, then the action is 

invariant under conformal transformations of the form, 

 

                                                      2'g g x g     ,                                        (2.27) 
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where  2 x  is an arbitrary function.  Since the determinant is only 2x2, the determinant 

of the metric has powers of 4 .  The square root thus yields a second order factor in   

which cancels with the inverse metric transformation, 

 

 2

1'g g g
x

  


  . 

 

The massless action is therefore invariant under such a transformation. 
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3.Unruh Effect 

The Unruh effect occurs when an accelerated observer sees black body radiation 

in a region of spacetime where an inertial observer does not.  In the previous section we 

have seen how the particle nature of the field is contained in equation (2.15).  For an 

inertial observer, (2.15) is defined with respect to the coordinate time t , while for the 

accelerated observer (2.15) is naturally defined with respect to proper time .  Because of 

this difference in construction, what is registered as a particle for one observer will not 

necessarily register as a particle for the other.  The accelerated observer will find the 

vacuum as a state containing particles and with an associated temperature.  This section 

follows [8].   

Consider an observer undergoing uniform one dimensional acceleration along the 

x -axis.  The observer’s trajectory according to the inertial observer is given by (ref. 

appendix.4) 

 

                               
       1 1cosh , sinhx a t a

a a
    

.                     (3.1) 

 

Using the light cone coordinates: 

 

                                                              ,u t x v t x    ,                                          (3.2) 

 

the Minkowski metric can be written as, 
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                                                                        2ds dudv .                                            (3.3) 

 

The trajectories of equation (3.1) become  

 

                                                         1 1,a au e v e
a a

     .                             (3.4) 

 

For a comoving frame of the accelerated observer we introduce the coordinates  0 1,  .  

According to the comoving frame, the accelerated observer is at rest at 1 0   and 0  

coincides with the proper time along the observer’s world line.  We define the accelerated 

observer’s coordinates away from his world line by imposing the condition that the 

metric take the following form   

                                               

                                                     2 22 2 0 1 0 1,ds d d        
,                              (3.5) 

 

where the term in brackets has the Minkowski signature (+,-), and  2 0 1,   is to be 

determined.  The lightcone coordinates for the accelerated frame are  

 

                                                   0 1 0 1,u v       .                                           (3.6) 

 

Under this coordinate transformation (3.5) becomes 
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                                                          2 2 ,ds u v dudv .                                            (3.7) 

 

Again the accelerated observers’ world line is  

 

                                                            0 1, 0      .                                           (3.8) 

 

Or in lightcone coordinates the world line is: 

 

                                                                 u v    .                                              (3.9) 

 

In order for the metric to be conformal about the observer’s world line we see that, 

 

                                                               2 , 1
u v

u v



 

 ,                                          (3.10) 

 

since 0  is the proper time at the accelerated observer’s world line.  The metric according 

to the inertial observer’s coordinates and the metric according to the accelerated 

observer’s coordinates are the same considering that they both describe the same 

Minkowski spacetime, thus 

 

                                                    2 2 ,ds dudv u v dudv  .                                    (3.11) 
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With regards to the coordinate transformation between  ,u v and  ,u v we choose the 

coordinate u to be dependent only on u and the coordinate v  to be dependent only on v .  

This is done in order to preserve the form of equation (3.7), so that no second order terms 

appear in the metric.  By the chain rule we have  

 

                                                            du du u du
d du d
 
 

  .                                        (3.12) 

 

Recalling equations (3.9) and (3.4), equation (3.12) becomes 

 

 du u
a u

du
  , 

 

which has a solution of the form 

 

                                                                a uu Ae .                                                    (3.13) 

 

Similarly for v  we have 

 

                                                                 a vv Be .                                                     (3.14) 

 

Equation (3.10) restricts the integration constants ,A B to satisfy  
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2 1a AB   . 

 

Choosing A B  , equations (3.13) and (3.14) become 

 

                                                         1 1,a u a vu e v e
a a


  ,                                    (3.15) 

 

and the metric is  

 

                                                            2 a v uds e dudv .                                             (3.16) 

 

Combining equations (3.16) and (3.6) we arrive at a commonly used version of the metric 

 

                                                          1 2 222 0 1ads e       
.                                   (3.17) 

 

This metric is locally equivalent to Minkowski spacetime and describes Rindler 

spacetime.   

     We have determined the effective coordinates (see appendix 7) for the inertial and 

accelerated observer.  Now we can analyze how quantum field theory behaves in each 

reference frame.  For a massless scalar field we use the action developed at the end of 

section 2, 
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                                                  4 1
2

S dx g g 
      .                                    (3.18) 

 

The action for the inertial observer is  

 

                                                   2 21
2 t xS dtdx       .                                     (3.20) 

 

From equation (3.5) we see that the accelerated observer’s metric has a conformal factor 

of 2 , and so his action takes the form 

 

                                                  0 1

2 2
0 11

2
S d d

 
          .                               (3.21) 

 

Using the Euler-Lagrange equations (2.7), we have for the inertial observer,  

 

           

             2 2 2 2

2 2

2 2

0

0 .

t t x x t x
t x

L L

t x




   
  

 

                                             
 

  
 
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The field equation for the Rindler observer is identical in form.  The field equations have 

plane wave solutions.  Following the quantization of the Klein-Gordon field in section 

(2), this field is given by 

 

                                   
       

       0 1 0 1

†

0

†

0

4

.
4

i t x i t x

i i

d a e a e

d b e b e

 

   


  






  


    

   

       




                       (3.22) 

 

 

The Minkowski vacuum is then defined by  

 

  0 0Ma   , 

 

while the Rindler vacuum is defined by 

 

  0 0Rb   . 

 

The Rindler lowering operator is linked to the Minkowski operators via the Bogoliubov 

transformations [11, pg-106], 

 

                                     
     

     

†

0

† * † *

0

.

b d a a

b d a a

 

 

    

    



 



 

    

    




                               (3.23) 
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Substituting (3.23) into (3.22) and converting to light cone coordinates we get on the 

right side of the equation 

 

   

       

       

 

†

0

† * † *

0 0 0

* * † †

0 0 0

0 0

4

4

4

4

i u i u

i u i u

i u i u i u i u

i u

d b e b e

d d a a e d a a e

d d a e a e d a e a e

d d a e

   

   






         


         


  



  

  
  

   

  
     

   

 
 



      

              
              








  

  

   * † *

0

i u i u i ue d a e e      


   
  

 
         

 


   
 

 

*

0 0

† *

0 0

4

.
4

i u i u

i u i u

dd a e e

dd a e e

 

 

   


   


 
  

 

 
  

 

       
       

 

 
                                                     (3.24) 

                                                                                                                                       

 

Compare this to the top term in equation (3.22).  By equating terms that have a common 

operator we get 

 

                                           *

0

1 i u i u i ude e e
  




   

 
     .                           (3.25) 

 

We can use the orthogonality property of exponential functions to determine the 

coefficients ,  .   Multiplying by  exp 'i u  and then integrating over all space yields 
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'
'

'
'

1 '
2

1 ' .
2

i u i u

i u i u

e du

e du








 


 


  





 













                                 (3.26) 

 

Using equation (3.15) we can express (3.26) completely in terms ofu . 
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The integral can be calculated yielding  
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                 (3.28) 

 

Then the coefficients obey the following relationship  
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The raising and lowering operators define particles for each observer.  Now we compute 

the expectation value of the number operator for the Rindler observer in the Minkowski 

vacuum.  Using equation (2.17) we have 

 

   †0 0M MN b b    . 

 

Next we substitute in the Bogoliubov transformations (3.23)  

 

     
       * † * †

' '
0 0

0 ' ' ' 0M MN d a a d a a            
 

               

                                                             2

0

d  


   .                                               (3.30) 

 

This is the mean number of particles with frequency   detected by the accelerated 

observer [8, pg-107].  The normalization condition for the ,  coefficients (ref. 

appendix 4) is  
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    .                                 (3.31) 

 

Substituting (3.29) into (3.31) we get 
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Then substituting in (3.30) we get  
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The thermal Boson-Einstein distribution [9] for the expectation value of the number 

operator is proportional to 
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,                                   (3.34) 

 

where T is the temperature and k is the Boltzmann constant.  Comparing equations (3.34) 

and (3.33) we have 
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We notice that the units are not correct.  This is because we set 1c  , inserting the speed 

of light gives the correct expression for the temperature 

 

                                                              
2
a

T
kc




.                                                      (3.35) 

 

The accelerated observer experiences a thermal bath of temperature T  proportional to his 

acceleration.  This is an odd result considering that the accelerated observer is moving 

through empty space.  A typical heuristic explanation is that quantum mechanics allows 

the vacuum to be littered with virtual particles.  These particles cannot supply their own 

energy to excite a detector, but the energy introduced via the acceleration of the observer 

allows the particles to become real and detectable.  This excitation of the vacuum is 

analogous to the Schwinger effect, where an intense electric field is used to create real 

particles.  It should also be noted that in order to induce a sizeable temperature change an 

enormous acceleration is required.  
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4. Hawking Radiation 

 When quantum field theory is used in the curved spacetime around black holes it 

is found that black holes produce a thermal distribution of particles [3].  This will be 

shown for a 1+1 dimensional static black hole (this section follows [8]).  A 3+1 

dimensional black hole is described by the Schwarzschild metric  

 

                                
2

2 2 2 2 2 221 sin21

M drds dt r d dMr
r

        
  

,                    (4.1) 

 

where 1G c   .  For simplicity let 2M m , then the two dimensional Schwarzschild 

metric is given by  
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.                                        (4.2) 

 

Next we make the coordinate transformation 
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The metric then becomes  

 

                                                     
 

2 2 21 '
'

mds dt dr
r r

 
       

 
.                                   (4.4) 

 

Notice that 'r is only defined for r m .  Transforming to the modified lightcone 

coordinates  

 

                                                       ', 'u t r v t r    ,                                               (4.5) 

 

equation (4.4) becomes further simplified 
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2 1
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mds dudv
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.                                        (4.6) 

 

There is an apparent singularity at r m  in the Schwarzschild metric.  This is also true 

for the modified lightcone coordinates, thus they only hold good for describing the 

exterior of the black hole.  In order to describe the whole spacetime we need to modify 

our coordinates.  This problem is solved by introducing the Kruskal-Szekeres lightcone 

coordinates 
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www.manaraa.com

 39 

With these coordinates the metric looks like  
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Then r is not restricted to the interior of the black hole and the whole spacetime is 

covered.   We can make a final coordinate substitution 

 

                                                     ,u T R v T R    ,                                               (4.9)                         

 

to get the metric into (+ -) form, 
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The factor in front of the area element is a conformal factor and so disappears in the 

action.  The action in equation (2.2.6) is then given by 

 

                                                 2 21
2 T RS dTdR       .                                    (4.11) 

 

We saw in the last section that actions of this form have the following field solutions: 
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Kruskal-Szekeres light coordinates are non-singular at r m  and serve as effective 

coordinates for an observer near the Schwarzschild horizon.  Moreover, near the 

horizon 2 2 2ds dudv dT dR   .  This indicates that the Kruskal-Szekeres coordinates 

are a natural coordinate choice for a field observer near the horizon.  Similar to what was 

done with the Unruh effect, we would like to compare field observations near the horizon 

to field observations made very far from the horizon where the spacetime is 

Minkowskian [8].  If we choose the modified light cone coordinates for distances very far 

from the horizon then, 2 2 2'ds dudv dt dr   .  Thus, the modified light cone 

coordinates are a natural choice for an observer far away from the black hole. The field 

expansion for the observer is  
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The field expansions which we wish to compare are identical in appearance to those 

which we have compared in the last section.  Following the exact same mathematics in 

section (3) we would get an identical result, except, the constant acceleration would be 
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replaced with a new constant.  To see what this value is we only need to compare the 

similar coordinate transformations provided in equations (3.15) and (4.7), 
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Substituting this into equation (3.35) we get  

 

8
T

M kc


 . 

 

Again it is seen that the units do not match.  This is because in equation (4.1) we 

let 1G c  .  Substituting accordingly into the above expression we get 
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Substituting this into equation (4.15) the expressions for the Newtonian acceleration and 

the Schwarzschild radius we have 
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This is exactly the same result which was obtained for the accelerated reference frame 

with surface gravity replacing acceleration.  A result which might have been expected, 

considering the equivalence principle of general relativity. 

 We can obtain another interesting result by starting with the area of the 

Schwarzschild horizon 

 

24 sA r , 

 

where sr is the Schwarzschild radius given by 
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Differentiating both sides we have  
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Substituting in equation (4.15) leads to 
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                                                           4
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Substituting equation (1.1) into (4.17) we get  
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If we consider the change in mass energy as a form of heat transfer and T to be the 

temperature associated with the black hole, then (4.18) resembles the first law of 

thermodynamics: 

 

dQ TdS . 

 

Thus, the Schwarzschild black hole has the following entropy 

 

                                                               
3

4
c kS A
G




.                                                   (4.19) 

 

As was mentioned in the introductory section, black holes are believed to be active 

thermal bodies with the thermodynamic properties given equations (4.19) and (4.15).  

Black holes are also intrinsically general relativistic and so black hole thermodynamics 

represents at least one link between thermodynamics and general relativity.  It is 
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important to note that the derivations of the Hawking radiation were done in a 1+1 

dimensional spacetime.  Generalizations to the actual 3+1 dimensional spacetime 

introduce complications in the mathematics.  For instance, the coordinate transformations 

that were used become more complex and in the case of Hawking radiation the field is 

expanded in terms of spherical harmonics [8, pg-119].  Moreover, the conformal 

invariance expressed in equation (2.27) is lost so that evaluating the action principle near 

the horizon becomes more complex.  Calculations still result in the same Hawking 

temperature distribution which is modified by a greybody factor [3].  
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5. The State Equation of Gravity 

 This section follows Ted Jacobson’s derivation of the Einstein field equations [4].  

The equivalence principle allows us to consider a local portion of curved spacetime as 

locally flat. Let us consider an accelerated observer p  in this frame.  There is a spacelike 

area element which is perpendicular to the world line of p that has vanishing expansion 

  and shear at the point 0p and is accelerating with p .  In accelerated reference frames, 

such as the ones mentioned in section (3), causal horizons form.  Beyond these horizons 

any emitted light signal will not reach an observer maintaining constant acceleration.  For 

the case of our locally flat frame of reference the past horizon of 0p will be called the 

“local Rindler horizon”.   Let   represent the vector field tangent to the observers’ world 

line and K be the four vector lying in the direction tangent to the horizon H .  We want to 

know the heat and entropy flow across the Rindler horizon so that we can make a 

thermodynamic argument similar to the one we made for the Hawking radiation.  In order 

for our observer to get close to the horizon his acceleration must approach infinity.  In 

this limit  essentially points along K , and so a aa K   , where   is the curve 

parameter that vanishes at 0p , and a  is the acceleration of  .  If we consider the flow of 

energy across the Rindler horizon to be a form of heat transfer then the variation of heat 

caused by energy flow across a differential portion of the horizon dA  is given by 
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where abT  is the stress energy tensor.  At the end of section (4) we discovered that the 

entropy of a black hole is proportional to the area of its event horizon.  Following this we 

assume that the variation of the entropy associated with the Rindler horizon is 

proportional to the variation in its area 

 

                                                                  .S A                                                      (5.2) 

 

Since the area element is traveling through curved space time it may expand and so 

A represents the variation in area as the observer approaches 0p .  Thus A is related to 

the expansion   by 

 

                                                              .
H

A d dA                                                 (5.3) 

 

On the differential area element we can imagine normal vectors pointing away from its 

surface.  As the area element moves through curved space time it may warp and the 

normal vectors may deviate and spread apart from each other.  This deviation is related to 

how curved the spacetime is.  The deviation is specifically expressed in the Raychaudhuri 

equation [10, pg-222] for null geodesic deviation 
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We consider null geodesic deviation because the acceleration of the area element is such 

that its world line is approximately light-like.  Since  and  under our construction are 

very small, their squares are negligible.  This leaves  

 

.a b
ab

d R k k
d


   

 

The right side does not vary with respect to  so we get 

 

  .a b
abR K K     

 

Substituting this result into equation (5.3) gives  

 

                                                    ,a b
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H

A R K K d dA                                              (5.5) 

and the variation in entropy is  

 

                                                     .a b
ab

H

S R K K d dA                                             (5.6) 

 

Considering that an accelerated observer riding along with the area element experiences a 

temperature according to the Unruh effect, and using this temperature, equation (5.6), and 

equation (5.1), the first law of thermodynamics gives 
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where we have taken the fundamental constants to be unity.  Note that the first law of 

thermodynamics also includes a work term which is not present in equation (5.7) because 

no work is being done by or on the system.  We are simply looking at the heat flow 

across a differential portion of the horizon.  Equation (5.7) can only hold if  

 

                                                  1 .
2

a b a b
ab abT K K R K K


                                             (5.8) 

 

This is true for an arbitrary null vector K , thus we have 

 

                                                      2 ,ab ab abT R fg


                                                  (5.9) 

 

where f is an undetermined function and abg is the metric tensor.  Local conservation of 

energy requires that the stress energy tensor be divergence free.  This is satisfied by the 

Bianchi identity with
2
Rf     

 
, where R is the scalar curvature (ref. appendix.6).  

Equation (5.9) becomes  
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We recognize this as the Einstein field equations for general relativity with  serving as 

the cosmological constant.  By imposing the first law of thermodynamics we were able to 

derive the Einstein field equations.  In general we can insist that any law of gravity be 

consistent with thermodynamics.  This provides a means for checking viable new 

theories. 
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6. Modified Gravity 

 In spiral galaxies we expect that each star travels in a circular path about the 

galactic center.  The gravitational strength outside the center is sufficiently weak and 

Newton’s theory of gravitation is a good approximation for stellar dynamics.  If we 

consider the galactic center to be far more massive then the surrounding stars then we can 

approximate it as a single massive body.  To determine the velocity of a star outside the 

galactic center we use Newton’s second law: 

                                             

                                                      
2

2

,

F m a
G M m vm

r r
G Mv

r
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 

 

                                               (6.1) 

 

where r is the radial distance from the galactic center to a particular star we are looking 

at.  From this we expect that stars which are farther from the center travel more slowly 

than stars nearer to the center.  This expectation parallels the velocity distribution of the 

planets in our solar system about the sun.  However, experimental evidence [12, 13, 14] 

indicates that galactic star velocity is constant with respect to changes in radial distance.  

A possible explanation for this mystery is that the total mass distribution of the galaxy 

has not been accounted for [14].  With the correct additional mass distribution the 
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observed velocities make sense.  However, this additional mass must be very hard to 

detect.  In fact, it must not reflect or emit light otherwise we would have observed it.  

This is “dark matter,” and it is not only difficult to detect but, it is also estimated that it 

accounts for the majority of the matter in our galaxy.  So far, not much experimental 

evidence has surfaced that verifies the existence of dark matter.  This has led some to 

appeal to an alternative theory of gravity rather than dark matter.  The simplest way to 

start is to modify Newton’s law of gravitation.  This was done in the MOND (modified 

Newtonian dynamics) theory developed by Mordehai Milgrom in 1983 [15].   Rather than 

the familiar relationship 
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MOND suggests the form 
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where 0a is an acceleration scale and  x is an undetermined function [15] which 

satisfies the conditions  
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In the everyday world
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and equation (6.2) is upheld.  For stars 

outside the galactic center 
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and equation (6.3) becomes  
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Under this construction the velocity is found to be independent of the radius which is 

what we want.  Although MOND is a great cosmological model, it is a poor theory of 

physics.   One of its major flaws is that it is not consistent with momentum conservation.  

To prove this, consider a group of particles located in an inertial coordinate system.  The 

modified Newton’s second law takes the form  

 

, 0
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If we assume that the only force acting on the particles is the gravitational force between 

the particles then Newton’s third law is upheld and there are no external forces.  This 

leaves  

 

0

0 i i

i

a dp
a dt


 

  
 


 

. 

 

For simplicity consider only two particles then 

 

1 21 2

0 0
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If the accelerations of both particles is large enough then this becomes: 
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and momentum is conserved under these conditions.  In general, the acceleration of one 

particle may be larger than the MOND limit, while that of the other particle is smaller.   

In that case we get  

 

21 2

0

0 .
adp dp

dt a dt
 

 
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2a  might vary with time so the time derivative cannot simply be pulled out from the right 

hand side to prove that the momentum is conserved.  The formulation of MOND 

presented in equation (6.3) fails to preserve many of the conservation laws [16] including 

conservation of momentum.  In order to pursue MOND as a viable alternative to dark 

matter it must uphold the conservation laws.  It turns out that a classical action can be 

created which reproduces the MOND result and is consistent with the conservation laws 

[16].  This formulation is called AQUAL (A Quadratic Lagrangian) and it is based on the 

lagrangian 

 

                                                  
22

0
2
08

aL f
G a






 
    

 
 

,                                         (6.5) 

 

where   is the modified gravitational potential,  is the mass density, and f is an 

undetermined function.  This lagrangian has the corresponding field equation 

 

2
0

4 ,G
a


   
   

    
   

                                 

 

which can be written in terms of the Newtonian field N  by substituting in equation 

(6.2), 
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0

0.Na


 
   

    
   

                                           (6.6) 

 

 AQUAL is a successful classical theory, but it is inconsistent with special relativity.  A 

true modified theory gravity must be fully relativistic.  One attempt at constructing a 

relativistic theory is by modifying general relativity such that the MOND result is 

achieved in the appropriate limit.  The essence of general relativity is codified in the 

Einstein-Hilbert action 

 

41
2

S R gd x
k

   , 

 

where 48k Gc  , and R is the Ricci scalar curvature.  This action reproduces the 

Einstein field equations and in the weak field limit the Einstein equations reduce to 

Newton’s theory of gravitation.  The idea is to modify the action so that the new field 

equations reproduce MOND results in the weak field limit.  The easiest way to tamper 

with the Einstein-Hilbert action is to replace R with a function of R , and the action 

becomes  

 

                                                         41
2

S f R gd x
k

   .                                       (6.7) 

 

Various functions may be chosen such that MOND results from a weak field 

approximation.  Many theories have been proposed under this framework and some have 
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failed because they allow for the existence of superluminal waves [17].  However, an 

even stronger argument against  f R theories was recently put forth by M. E. Soussa and 

R. P. Woodard [18].  Their work takes advantage of the experimental evidence 

discovered from the gravitational lensing of star light by galactic clusters.  In particular it 

has been found that the degree to which star light is bent around an observed galactic 

cluster cannot be explained by the observed mass distribution [19].  This is seen as a 

victory for dark matter since the anomalous gravitational lensing can be explained away 

by adding extra matter to the cluster [19].  In order for modified gravity theories to 

survive, they must account for both the flat rotation curves of galaxies and the anomalous 

gravitational lensing.  Woodard and Soussa [18] showed that any modified theory that is 

built on the metric alone cannot have a MOND like non-relativistic limit and account for 

the anomalous gravitational lensing.  Since, the action shown in equation (6.7) is 

dependent only on the metric (see appendix 6) it cannot be used to generate acceptable 

modified theories of gravity.   

 To deal with these problems in modified theories of gravity J. D. Bekenstein and 

M. Milgrom [17] have proposed a theory which is consistent with both the rotation curve 

and lensing results.  To address the problems introduced by Woodard and Soussa, 

Bekenstein (this summary of TeVeS follows [17]) uses an action which is dependent on a 

scalar field and a vector field as well as the metric tensor.  The theory is appropriately 

named TeVeS (Tensor Vector Scalar Theory), and it has action principles for determining 

each parameter 

                                                    

                                  4
g s v m g s v mS S S S S L L L L d x        .                           (6.8) 
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Here gL is origin of the metric tensors dynamics, sL is the origin of the scalar field’s 

dynamics, vL is the origin of the vector field’s dynamics, and mL describes any matter 

fields appearing in the theory.  Following AQUAL’s success, the scalar field is 

introduced so that TeVeS has a MONDian limit that preserves the conservation laws.  

The vector field is introduced to account for the anomalous gravitational lensing.  The 

metric tensor lagrangian and the matter field lagrangian are kept so that general relativity 

is produced in the appropriate limit.  gL is given by the Einstein-Hilbert action 

 

                                                    1
16gL R g

G
    ,                                                 (6.9) 

 

where we are using units such that 1c  .  vL is given by 

 

                        2 1
32v

KL g g B B g u u g
G K

  
   




       
  ,                  (6.10) 

 

where K is a dimensionless parameter and B u u       , u is the time-directed unit 

vector field obeying 1g u
   and  is a Lagrange multiplier constraining the vectors 

length to unity.  sL is given by 
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   

            
 

,                      (6.11)    

 

where k is a dimensionless positive parameter, l is a length scale, F is an undetermined 

function,   is a dynamic scalar field, and  is a non-dynamical auxiliary scalar field.  

The matter field lagrangian is set to depend on field variables f and the physical 

metric g , 

 

                                             ;, , ,... ,m mL L g f f g 
    .                                 (6.12.a) 

                                             2 2 .g e g u u e u u 
     

                                    (6.12.b) 

 

We saw in equation (6.6) that there is a relationship between the Newtonian field and the 

modified field.  The physical metric behaves analogously as the modification to the 

Einstein metric.  The physical metric represents the true spacetime metric and determines 

the geometrical spacetime structure.  Variation of the total action with respect to the 

inverse metric gives the TeVeS Einstein equations for g , 
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where,  
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and 
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In the above equation, T is the usual stress energy tensor,  is the analogous energy-

momentum tensor resulting from the scalar field, and  is the analogous energy-

momentum tensor resulting from the vector field.  Variation with respect to the inverse 

metric yields one field equation, however, there are four undetermined fields.  TeVeS 

prescribes variation with respect to , ,u  as well.  Variation with respect to the vector 

field yields,  
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www.manaraa.com

 60 

where the semicolon represents a covariant derivative.  Variation with respect to the 

dynamic scalar field gives, 

 

                           2 4

;
1 ,kl h h kG g e u u T     

   
                          (6.17) 

 

where  is a function that is related to the undetermined function F via the relationship, 

 

     21 ' .
2

y F F y       

 

Variation of the non-dynamical scalar field yields the equation, 

 

                                          22 2 21 ' .
2

kG F kG F kl h
                                  (6.18) 

 

TeVeS spacetime has a definite geometrical structure which is determined by the physical 

metric.  It also uses the stress energy tensor to codify all information regarding the 

matter-energy distribution in the spacetime.  It follows the same general concept of 

general relativity that (a measure of local spacetime curvature) = (a measure of matter 

energy density) [20] and so it should be subject to the same thermodynamic argument 

presented in section (5).  If we could isolate an expression for the stress energy tensor in 

terms of the metric tensor, vector, and scalar fields then we could substitute that 

expression into the left hand side of equation (5.8) and check to see if it reduces to the 

right hand side.  Equation (6.13) looks promising since it already incorporates the 
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Einstein tensor.  However, we must remember that the TeVeS spacetime structure is 

determined by the physical metric.  This means that the Ricci tensor is now built out of 

the physical metric and is in general different then the Ricci tensor which is built on the 

Einstein metric.  The Ricci tensor seen in equation (5.8) then becomes the physical Ricci 

tensor in the TeVeS setting.  The tensor contained in the Einstein tensor of equation 

(6.13) is the non-physical Ricci tensor (the Einstein Ricci tensor) [17].  This makes the 

technique of substituting (6.13) into (5.8) more complicated.  We could proceed by 

writing the physical Ricci tensor in terms of the Einstein metric by using equation 

(6.12.b) and hope that there is a simple relationship between the physical Ricci tensor and 

the Einstein Ricci tensor.  There are also terms in (6.13) that are independent of the 

metric and we would have to determine what happens to them when they are contracted 

with the null K K  vectors.  Most importantly, the dynamics of the four TeVeS fields are 

determined by the complicated partial differential equations (6.13), (6.16), (6.17), and 

(6.18).  The stress energy tensor cannot be extracted from these equations as desired.  

However, we can specify a particular stress energy tensor and determine the 

corresponding TeVeS fields.  Then we can check TeVeS’s thermodynamic validity under 

that restricted case.  
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7. Conclusion  

 General Relativity passes all solar system tests with flying colors, but fails to 

describe the motion of observable matter on the galactic scale.  The conservative 

approach in addressing this issue is to preserve the gravitational theory while proposing 

the existence of additional unobservable matter.  The more radical approach is to propose 

an alternative theory of gravity.  The work of Woodard and Soussa [18] indicates that any 

theory that aims to explain both the flat galactic rotation curves and the anomalous 

gravitational lensing cannot be built on the metric alone.  It is possible for gravitational 

theories to be built out of non-metric components along with metric components as was 

done in TeVeS theory.  The thermodynamic argument developed in chapter (5) should be 

applicable so long as gravitational theories operate in a spacetime that is represented by a 

Riemannian manifold.  The thermodynamic argument can then be used to check new 

theories of gravity for their consistency with thermodynamics.  This may serve as a 

guiding principle for weeding out unacceptable theories.  In the case of TeVeS more 

work must be done in testing its thermodynamic validity for specific choices of the stress 

energy tensor.  This is still a daunting task considering the complexity of the TeVeS field 

equations.  A starting point is to choose a zero mass-energy distribution so that the stress 

energy tensor disappears from the field equations.  This also reduces the Einstein metric 

to the Minkowski metric which makes computations significantly simpler since the off 

diagonal elements are zero.  Using the field equations we can determine the vector and 

scalar fields and substitute them into (6.12.b).  The physical Ricci tensor can then be 

written in terms of the Einstein metric as well as the vector and scalar fields.  Then we 
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can check if the contraction of the physical Ricci tensor with the null vectors in equation 

(5.8) yields zero.  
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Appendix 

Appendix 1 

Appendix.1 follows [5, pg-558].  We can compute the classical Euler-Lagrange equations 

for the Lagrangian given by equation (2.1). 
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We can divide through by l  , and realizing that the sums only survive for i j  the 

equation of motion becomes 
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This is equivalent to Newton’s second law, where the second term is the force term.  For 

an elastic rod obeying Hooke’s law, the extension per unit length is directly proportional 

to the force acting in the rod.  

   

                                                              ,F Y                                                          (a.1.2)  

 

where Y is Young’s modulus and  is the extension per unit length.  The extension per 

unit length in the rod is given in the bracketed term of equation (a.1.1).  By comparing 

(a.1.1) with (a.1.2) we see that for the continuous rod kl corresponds to Young’s 

modulusY . 

 

Appendix 2 

To check the Lorentz invariance of (2.5), we recall the boost transformations for inertial 

reference frames in Minkowski space   

 

                                                        
 

2' ,

' .

vxt t
c

x x vt





   
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 
                                                 (a.2.1) 

 

A scalar is specified by one real number and is a quantity that doesn’t change under 

coordinate transformations.  In relativity theory, inertial reference frames are coordinate 

frames in Minkowski space.  Thus, between any two inertial reference frames in 

Minkowski space (say a primed and unprimed frame), the scalar field obeys the condition 
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In order to show that equation (2.5) is Lorentz invariant we start by transforming ,
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By the chain rule we have 
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Substituting in the Lorentz transformations this becomes 
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Next,  
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Combining (a.2.2) and (a.2.3) we have, 
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2 2 2 2
2 2

2 2 2 22 2
2 2 2 2 2 2 2

2

2 2
2 2 2 2

2

, , ', ' ', '

2 2
' ' ' ' ' ' ' '

1
'

x t x t x t x t
c c

t x t x

vv v c v
x x t t x x t c t

vv c
x c

   

        
    

 

          
                   

                                        

          

2

2 22 2
2 2 2

2 2

2 2
2

'

1 1
' '

.
' '

t

v vc
c t c x

c
t x



 
 

 

 
  

                       

            

 

                                                                                                                                     (a.2.4) 



www.manaraa.com

 68 

The integrand is Lorentz invariant.  Now we must check the differential form dxdt .  

Rearranging equation (a.2.1) we find that  

 

                                              
 

 

2

2

''

' ' ,

''

' ' .

vxt t
c

x x vt

vdxdt dt
c

dx dx vdt









   
 

 

    
 

 

                                                    (a.2.5) 

 

The differential form dxdt  found in the action integral is the result of the exterior 

product dx dt .  The exterior product is an anti-symmetric product which obeys the 

following rules: 

 

0.
dx dy dy dx
dx dx

   
 

 

From the transformations found in equation (a.2.5) we see that  
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  2

2 2
2 2 2 2

2 2

2
2 2

2

2
2 2

2

2
2

2

' ' ' '

' ' ' ' ' ' ' '

' ' ' '

' ' ' '

1 ' '

' ',

vdxdt dx dt dx vdt dt dx
c

v vdx dt dx dx vdt dt dt dx
c c
vdx dt dt dx
c
vdx dt dx dt
c

v dx dt
c

dx dt

 

   

 

 



       
 

       

   

   

 
   

 
 

 

 

or hiding the exterior product  

 

                                                       ' '.dxdt dx dt                                                        (a.2.6) 

 

Combining (a.2.4), and (a.2.6) we see that the action arrived at in equation (2.5) is indeed 

Lorentz invariant 

 

        
2 2 2 2'

2 2

0 0

1 1 ' '.
2 2 ' '

T T

S c dxdt c dx dt
t x t x
   


                                          

            (a.2.7) 

 

Appendix 3 

This is a non rigorous sketch of the coordinate invariance of the action  

 4 2 21 .
2

S dx g g m
         
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The scalar field   is by definition coordinate invariant so we need to show that the first 

term is also invariant under an arbitrary coordinate transformation. 

 

   0 1 2 3 0 1 2 3, , , ' ' , ' , ' , 'i ix x x x x x x x x x   . 

 

The inverse metric tensor transforms according to the rule 

 

                                        ' .
' '

x xg g
x x

 
 

 

 

 

                                              (a.3.1) 

 

The partial derivatives of the field transform according to the chain rule 

 

                                            ''' ' ' ' .
'
xx xx x

x x x

 

   


 

 
   

  
                              (a.3.2) 

 

Then, 

 

            

       

   

   

' '

' '

' '

' '' ' ' ' '
' '

' ' ' ' ' ' '
' '

' ' ' ' ' ,

x x x xg x x g x x
x x x x
x x x x g x x
x x x x

g x x

   
 

      

   


    


 

   

 

 

   
    

   
   

  
   

  

                 (a.3.3) 

 

is also coordinate invariant (this is of course not mathematically rigorous).  It remains to 

show that 4dx g  is also invariant.  A direct approach to this is significantly more 
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involved than the other steps, so I will only provide a sketch of how to proceed by brute 

force.  The metric with components g can be thought of as a matrix with determinant 

 

                               

00 01 02 03

10 11 12 13
0 1 2 3

, , ,20 21 22 23

30 31 32 33

det ,ijkl i j k l
i j k l

g g g g
g g g g

g g g g g g
g g g g
g g g g

                (a.3.4) 

 

where ijkl is a four component Levi-Civita symbol.  The symbol takes the value of 0 for 

repeated indices, 1 for even permutations, and -1 for odd permutations.  Terms with 

repeated indices are not considered in the sum.  This leaves 24 possible terms  

 

0123 0132 0213 0231 0312 0321

1023 1032 1203 1230 1302 1320

2103 2130 2013 2031 2310 2301

3120 3102 3210 3201 3012 3021

1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1

1, 1, 1, 1, 1, 1

     
     
     
     

        
        

        
         .

    

 

 

So the sum in (a.3.4) looks like 

 

           0 1 2 3 00 11 22 33 00 11 23 32 00 12 21 33
, , ,

....ijkl i j k l
i j k l

g g g g g g g g g g g g g g g g                   (a.3.5) 

 

Some simplification can be made by imposing the condition that the metric is symmetric.  

Each metric component transforms according to the sums 
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                                                 ' '' .x xg g
x x

 

   

 


 
                                                 (a.3.6) 

 

This must be substituted for each component in (a.3.5).  Next we notice that the 

integration element transforms as 

 

                                                         ' .
'

xdx dx
x


 







                                                 (a.3.7) 

 

Substituting (a.3.6) and (a.3.7) into 4dx g yields a long and troublesome expression.  

However, it yields sufficient cancelation to reduce to   

                                              

                                                    4 4' ' .dx g dx g                                                (a.3.8) 

 

The odd term g  is introduced as a scaling factor to ensure invariance in the hyper-

volume element.  With regards to four dimensional spacetime metrics with the 

conventional (-, +, +, +) signature the determinant is always negative, so we include the 

negative sign under the square root to ensure that the action is real. 

 

 

Appendix 4 

The four velocity of the accelerated observer is given by 
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   , , , , .d dx dx dtu ct x c c c v
d d dt d

   
  

              

The four acceleration of the observer is then given by 

 

1 1
2 22 2

2 2

3 3
2 22 2

2
2 2 2 2

,

,

1 , 1

1 2 1 21 , 1
2 2

du da c v
d d

d d dvc v
d d d

d v d v dv dtc v
d c d c dt d

v v dv v v dvc v x
c c d c c d

 
 

 


  


  


 

 

 


 

    
 

                
    

                                       





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3 3 2 2 4 4 2 2
2 2

2
4 4 2 2 4

22 22
2

22

2 2

4

1 1 1 1, ,

1 1 1 1, ,
11

1
1 ,

dv dt dv dta v v x v x v x x
c dt d c dt d c c

vv x v x v x x
c c c vvc cc

vv c
v x

c

     
 

   



   

   



            
  
  

                             

 


2

2 2 2 2
4

2 22 2
2 2

2 2

4 4

4

1 ,

1 1

1 ,

1 ,1 .

c v v cx v x x
cv vc c

c c

v x x
c

x v
c



 



  

 



                                                          

    
    

 

Then the magnitude of the acceleration is 

 

4

4

3

1 0
,1

0 1 1

1

.

v
va a a x c
c

x

x














                 





 

So we have,  
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 

 

3 3
2 22 2

2 2

3
2 22

2
2 2

3
2 2 22

3
2 2

2

2

2

1 1

1 , , ,

1 , sin , cos ,

1 sin1 sin cos
cos cos

1

0 0,

dv v va a dt dv
dt c c

v va t k dv let u cdu dv then
c c

a t k c u du let u du d then

a t k c d c d c

v
v
c

If v at t the

  

   
 

 







   
       

   

 
     

 

    

    





 

 





 

 

2
2 2

2

2

2 2

2

0

1

.

1

n k
va t

v
c

a t
v t

a t
c









 

Next,  

 

2

2

.
1

ddt
v
c






 

 

Substituting in our expression for  v t we have, 
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 

1
2 2 2

22 2

1
22

22 2

2

1

1

,

1
1

sinh

0, 0, 0

sinh .

a t
dt d

c a t

c dt k
c a t

a a
let u t du dt

c c
c du k
a u
c u k
a

If when t then k
act

a c















 
   
  

 
   
  

 

 


 

  

 
   

 

 





 

Substituting this into our expression for  v t we get 

  tanh

1 tanh

tanh

a
v t c

c

adx dx d dx c
dt d dt d c

a
dx c d

c




  


 

 
  

 
 

    
 

 
   

 

 

 

2

2

tanh
1 tanh sinh

sec1 tanh

cosh .

a
c

ca a
dx c d d c d

c caa h
cc

Integration Gives
acx

a c


 

  





 
                
      

 
   

 
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Appendix 5 

In order to derive equation (3.31) we start with the commutation relation  

 

                                               †, ' 'b b       .                                           (a.5.1) 

 

From the Bogoliubov transformations (equation (3.23)), equation (a.5.1) becomes  

 

           

    

 

† * † *
' ' ' '

0 0

* *
' ' ' '

0 0

* *
' '

0

' , ' ' '

' ' '

.

d a a d a a

d d

d

   

   

   

          

           

    

 

   

 

   



   

 
     

 

   

 

 

 



 

 

Appendix 6 

Consider the modified action  

 

  41
2

S f R gd x
k

   . 

 

g is the determinant of the metric so it is built out of metric components.  The Ricci 

scalar curvature R is determined by the contraction of the inverse metric tensor with the 

Ricci tensor 
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R g R


 . 

 

The Ricci tensor is a sort of sub tensor of the Riemann curvature tensor such that 

 

R R
  . 

 

The Riemann tensor built out of the sum of derivatives of Christoffel symbols  

 

R      
                  . 

 

Lastly, the Christoffel symbols are built out of derivatives of the metric tensor 

 

 1
2

g g g g 
            . 

 

Ultimately R is dependent on the components of the metric tensor and so the original 

action is dependent on the metric only.   

 

Appendix 7 

In special relativity there is no preferred inertial frame and the field can be determined 

from the action given in equation (2.6).  It is natural to choose the proper time of each 

inertial observer as the time coordinate for the field expansion.  This is because the time 

measured by a clock that is commoving with an inertial observer is defined to be the 
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proper time of that observer.  For accelerated motion and motion through curved 

spacetime the proper time is also a natural choice of time coordinate for the same reason.  

In section (3) we choose the Rindler coordinates as effective coordinates for the 

accelerated observer because 0 coincides with the observer’s proper time when 

evaluated on the observer’s world line.  Effective coordinates must also be well defined 

in the region of spacetime that we are concerned with.  Although, the Rindler coordinates 

only cover one quarter of the (1+1) dimensional spacetime, they successfully map the 

region of constant acceleration and so they are effective coordinates.  The same reasons 

can be provided for the choice of coordinates used in section (4).  The analysis of 

quantum field theory in the presence of a Schwarzschild black hole is simplified by the 

spherical symmetry of the space time.  In an arbitrarily curved spacetime, there may not 

be an obvious choice of time coordinate.  How to proceed in cases where there is no 

spacetime symmetry is a question that is yet to be answered.    
 

 

 

 

 

 

 



www.manaraa.com

 80 

References 

[1]  S. Carlip, Physics of Black Holes, Lecture Notes in Physics 769 (Springer, 2009). 

[2]  J. D. Bekenstein, Phys. Rev. D7 (1973). 

[3]  S. W. Hawking, Commun. Math. Phys. 43, 199 (1975). 

[4]  T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995). 

[5]  Goldstein, Poole, and Safko, Classical Mechanics, Third Edition (Addison Wesley, 

2002). 

[6]  Zee, Quantum Field Theory in a Nutshell (Princeton University Press, 2003). 

[7]  Ryder, Quantum Field Theory, (Cambridge University Press, 1985). 

[8]  Mukhanov and Winitzki, Introduction to Quantum Effects in Gravity, (Cambridge 

University Press, 2007). 

[9]  P. M. Alsing and P. W. Milonni, Am. J. Phys. 72, 12 (2004). 

[10]  R. M. Wald, General Relativity, (The University of Chicago Press, 1984). 

[11]  J.  Oort, Bull. Astron. Soc. Neth. 6, 249 (1932);  15, 45 (1960). 

[12]  F.  Zwicky, Helv. Phys. Acta 6, 110 (1933). 

[13]  S. Smith, Astrophys. Journ. 83, 23 (1936). 

[14]  Dark Matter in the Universe, G. R. Knapp and J. Kormendy, eds. (Reidel, 

Dordrecht 1987).  

[15]  M. Milgrom, Astrophys. Journ. 270, 365 (1983). 

[16]  J. D. Bekenstein and M. Milgrom, Astrophys. J. 286 (1984) 7. 

[17]  J. D. Bekenstein, Phys. Rev. D70 (2004) 083509 ; arXiv:  astro-ph/0412652. 

[18]  M. E. Soussa and R. P. Woodard, A generic problem with purely metric 

formulations of MOND, Phys. Lett. B 578 (2004) 253. 



www.manaraa.com

 81 

[19]  D. J. Mortlock and E. L. Turner, Mon. Not. R. Astron. Soc. 372,  552 (2001), arXiv:  

astro-ph/0106099. 

[20]  Hartle, Gravity, An Introduction Einstein’s General Relativity (Addison Wesley, 

2003). 

[21]  Zwiebach, A First Course in String Theory, (Cambridge University Press, 2004). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 82 

Vita 
 

Aric Allan Hackebill was born on September 6, 1986, in Eglin Air Force Base 
Florida.  In 2008 he received a Bachelor of Arts degree in Physics from the State 
University of New York at Geneseo.  In the same year he began his graduate studies at 
Virginia Commonwealth University.  Here, he completed their Master of Science degree 
program under the advisement of Dr. Robert Gowdy.  Aric plans to continue his graduate 
studies in the field of theoretical physics.     

 
 
 

 

 

 

 

 

 

 

 


	Thermodynamics of Modified Theories of Gravity
	Downloaded from

	Microsoft Word - Term Paper 5.doc

